- elementary idempotent
- мат.элементарный идемпотент
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Algebraic structure — In algebra, a branch of pure mathematics, an algebraic structure consists of one or more sets closed under one or more operations, satisfying some axioms. Abstract algebra is primarily the study of algebraic structures and their properties. The… … Wikipedia
Algebra of sets — The algebra of sets develops and describes the basic properties and laws of sets, the set theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures … Wikipedia
Special classes of semigroups — In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists… … Wikipedia
Mathematical analysis — Mathematical analysis, which mathematicians refer to simply as analysis, has its beginnings in the rigorous formulation of infinitesimal calculus. It is a branch of pure mathematics that includes the theories of differentiation, integration and… … Wikipedia
Addition — is the mathematical process of putting things together. The plus sign + means that two numbers are added together. For example, in the picture on the right, there are 3 + 2 apples meaning three apples and two other apples which is the same as… … Wikipedia
List of matrices — This page lists some important classes of matrices used in mathematics, science and engineering: Matrices in mathematics*(0,1) matrix a matrix with all elements either 0 or 1. Also called a binary matrix . *Adjugate matrix * Alternant matrix a… … Wikipedia
Spinor — In mathematics and physics, in particular in the theory of the orthogonal groups (such as the rotation or the Lorentz groups), spinors are elements of a complex vector space introduced to expand the notion of spatial vector. Unlike tensors, the… … Wikipedia
Projective module — In mathematics, particularly in abstract algebra and homological algebra, the concept of projective module over a ring R is a more flexible generalisation of the idea of a free module (that is, a module with basis vectors). Various equivalent… … Wikipedia
Lattice (order) — See also: Lattice (group) The name lattice is suggested by the form of the Hasse diagram depicting it. Shown here is the lattice of partitions of a four element set {1,2,3,4}, ordered by the relation is a refinement of . In mathematics, a… … Wikipedia
Monad (functional programming) — In functional programming, a monad is a programming structure that represents computations. Monads are a kind of abstract data type constructor that encapsulate program logic instead of data in the domain model. A defined monad allows the… … Wikipedia
Boolean algebra (logic) — For other uses, see Boolean algebra (disambiguation). Boolean algebra (or Boolean logic) is a logical calculus of truth values, developed by George Boole in the 1840s. It resembles the algebra of real numbers, but with the numeric operations of… … Wikipedia